Arterial Shear Stress Reduces Eph-B4 Expression in Adult Human Veins

نویسندگان

  • Lynn S. Model
  • Michael R. Hall
  • Daniel J. Wong
  • Akihito Muto
  • Yuka Kondo
  • Kenneth R. Ziegler
  • Amanda Feigel
  • Clay Quint
  • Laura Niklason
  • Alan Dardik
چکیده

Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eph-B4 prevents venous adaptive remodeling in the adult arterial environment

Eph-B4 determines mammalian venous differentiation in the embryo but is thought to be a quiescent marker of adult veins. We have previously shown that surgical transposition of a vein into the arterial environment is characterized by loss of venous identity, as indicated by the loss of Eph-B4, and intimal thickening. We used a mouse model of vein graft implantation to test the hypothesis that E...

متن کامل

Control of blood vessel identity: from embryo to adult.

Arteries and veins have been historically defined by the direction of blood flow and oxygen tension within the vessel, in addition to their functional, hemodynamic, and anatomical differences. It is now known that the molecular identity of these vessels is genetically predetermined, with specific molecular pathways activated during the development of arteries and veins. Eph-B4 is a determinant ...

متن کامل

Improving the Outcome of Vein Grafts: Should Vascular Surgeons Turn Veins into Arteries?

Autogenous vein grafts remain the gold standard conduit for arterial bypass, particularly for the treatment of critical limb ischemia. Vein graft adaptation to the arterial environment, i.e., adequate dilation and wall thickening, contributes to the superior performance of vein grafts. However, abnormal venous wall remodeling with excessive neointimal hyperplasia commonly causes vein graft fail...

متن کامل

Venous identity is lost but arterial identity is not gained during vein graft adaptation.

OBJECTIVES Ephrin ligands and Eph receptors are signaling molecules that are differentially expressed on arteries and veins during development. We examined whether Eph-B4, a venous marker, and Ephrin-B2, an arterial marker, are regulated during vein graft adaptation in humans and aged rats. METHODS AND RESULTS Eph-B4 transcripts and immunodetectable protein are downregulated in endothelial an...

متن کامل

Molecular Distinction and Angiogenic Interaction between Embryonic Arteries and Veins Revealed by ephrin-B2 and Its Receptor Eph-B4

The vertebrate circulatory system is composed of arteries and veins. The functional and pathological differences between these vessels have been assumed to reflect physiological differences such as oxygenation and blood pressure. Here we show that ephrin-B2, an Eph family transmembrane ligand, marks arterial but not venous endothelial cells from the onset of angiogenesis. Conversely, Eph-B4, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2014